Headquarters U.S. Air Force

Integrity - Service - Excellence

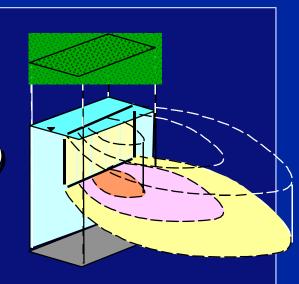
The BIOPLUME III Natural Attenuation Model

Charles J. Newell, Ph.D., P.E. Groundwater Services, Inc. Jan. 31, 2001

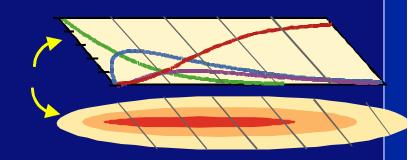
Team Members and Funding

- Hanadi S. Rifai, Ph.D., P.E.
 University of Houston
- Jim Gonzales, Ross Miller

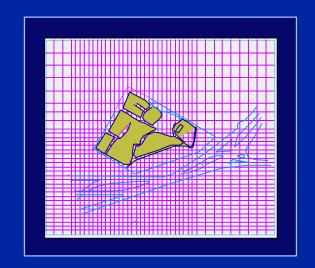
 AFCEE Tech Transfer Division


Funded by AFCEE Tech Transfer Division

Natural Attenuation Models


Fuel Sites

- BIOSCREEN (analytical, two decay options, source decay term)
- BIOPLUME III (numerical, electron acceptors)


Solvent Sites

- BIOCHLOR (analytical, sequential reductive dechlorination)
- RT3D (complex numerical model)

Types of Fate and Transport Models

- 1-D vs. 2-D vs. 3-D Advection
- 1-D vs. 2-D vs. 3-D Dispersion
- **Deterministic** vs. Statistical
- Numerical vs. Analytical
- Transient vs. Steady State
- Constant Source vs. Changing Source

(BIOPLUME III Features)

Model Selection Guidelines

Model Type

Capabilities

Data Needs

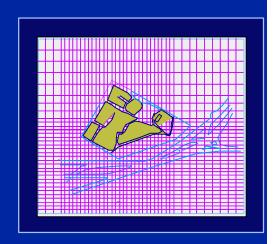
Complexity

Hand Calcs:

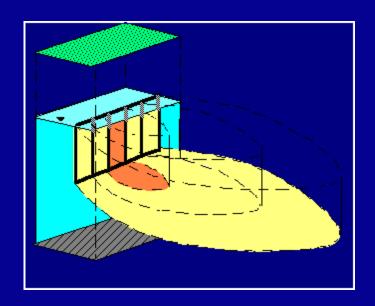
Advection Only

Simple

Uniform flow Moderate
Simple source
Key NA Processes


Complex flow
Complex sources
Pumping

High



Strengths of Numerical Models such as BIOPLUME III

- Can model changing flow directions
- Can simulate complex changes in source strength o
- Can handle pumping wells, streams, springs, etc.
- Can model heterogenieties

Introduction to BIOPLUME III

BIOPLUME III

- Core Model Developed by Hanadi S. Rifai (Univ. of Houston)
- Interface Developed by ZEI/Microengineering
- Funded by AFCEE
- Peer-Reviewed by Blue-Ribbon Panel

BIOPLUME III

- Two-dimensional, finite difference
- Runs on PC in Windows environment
- Enhancement over BIOPLUME II
- Incorporates anaerobic electron acceptors

BIOPLUME III

- Based on the USGS MOC dated July 1989
- Simulates transport of six components
 - contaminant
 - oxygen
 - nitrate
 - iron
 - sulfate
 - carbon dioxide

BIOPLUME III Applicability

- Primarily used for natural attenuation
- Predicts plume extent & receptor concentrations:

How far ?

How long?

BIOPLUME III Limitations

- Does not account for selective or competitive biodegradation
- Simplifies the complex biological redox reactions

BIOPLUME III Conceptual Biodegradation Model

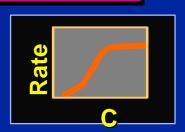
Sequential Degradation

```
Oxygen
Nitrate
Iron(III)
Sulfate
Carbon Dioxide
```

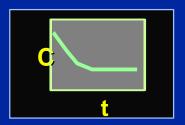
Aerobic and Anaerobic Electron Acceptors

Electron	Type of	Metabolic	Redox	Reaction
Acceptor	Reaction	By-Product	Potential	Preference
			(pH = 7, in	
			volts)	
Oxygen	Aerobic	CO ₂	+ 820	Most
				Preferred
Nitrate	Anaerobic	N2, CO2	+ 740	ß
Ferric Iron	Anaerobic	Ferrous	- 50	a
(solid)		Iron		
		(dissolved)		
Sulfate	Anaerobic	H ₂ S	- 220	ß
Carbon	Anaerobic	Methane	- 240	Least
Dioxide				Preferred

Redox Reactions

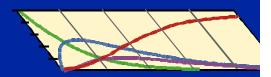

Concept: Combine reduction and oxidation reactions

Xylene oxidation reaction:

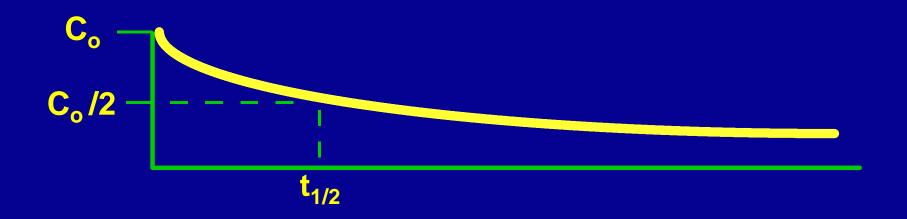

$$C_8H_{10} + 16 H_2O \rightarrow 8 CO_2 + 42 H^+ + 42 e^-$$

Kinetic Models for in BIOPLUME III

Monod/Michaelis-Menton (For any contaminant)(in BIOPLUME III)



- First Order Decay (For any contaminant) (in BIOSCREEN)
- Electron Acceptor Limited Biodeg. / ("Instantaneous Reaction) (For BTEX only) (in BIOSCREEN)



Biodegradation Kinetic Models

First-Order Decay Model

$$C = C_o e^{(-kt)}$$

 $t_{1/2} = 0.693 / k$

Biodegradation Kinetic Models

Instantaneous Reaction Model

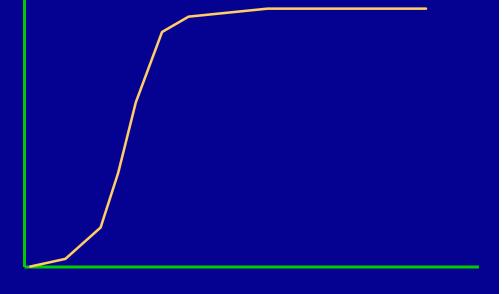
$$DC_R = - O$$

DC_R = Change in contaminant concentration due to biodegradation

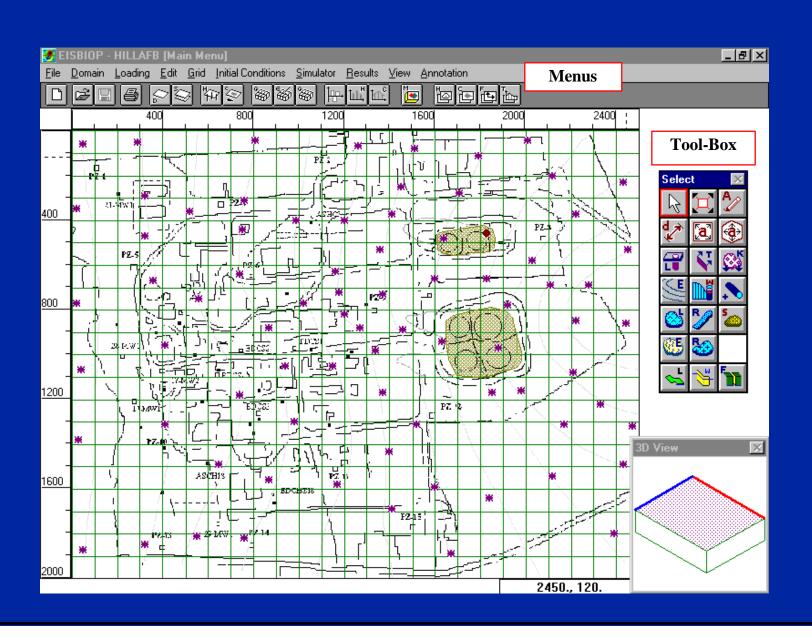
O = Concentration of Oxygen

F = Ratio of oxygen to contaminant consumed

Biodegradation Kinetic Models


Monod Kinetic Model

$$m = \underline{m}_{max} \underline{C} \\ K_C + C$$


 M_t

$$DC = M_t \underline{m_{max} C} Dt$$

$$K_C + C$$

Graphical User Interface Platform Menu and Toolbox

Modeling Procedures

- Establish model purpose
- Develop conceptual model
- Calibration
- Validation
- Prediction

Where to Get BIOPLUME III

EPA Center for Subsurface Modeling Support (R. S. Kerr Lab)

- Web: http://www.epa.gov/ada/csmos/models.html
- Phone (405) 436 8718

